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The vibrations problem of panels representing extensively utilized structural elements 
is of practical importance in mechanics and engineering. As is known, such panel vibra- 
tions developing in the supersonic domain may cause instability of the structure. Among 
the reasons specifying the panel vibrations should be primarilyaerodynamic forces that 
occur due to motion. The papers [1-16] are devoted to the panel flutter problem, i.e., 
the interaction of aerodynamic forces and panel motion. Since this problem is so very 
complex, simplifying assumptions are ordinarily made in many investigations and the 
stability properties are studied in panel flutter problems on the basis of applying dif- 
ferent direct integration methods. One of the effective methods of an analytic study of 
stability in panel flutter problems is the direct Lyapunov method [8-17]. 

Sufficient conditions are obtained in this paper for the technical stability (TS) [17-24] 
of two-dimensional panel motion in a supersonic stream. The fundamental results are found 
on the basis of the comparison method [22-24] in combination with the second Lyapunov 
method [17, 21]. According to [8-14], the motion of the system under consideration is 
described by a linear partial differential equation obtained on the basis of piston theory. 
A load applied to a panel along its edge is independent of the time. The TS domain is 
related to positive definiteness condition of the Lyapunov functional, a small positive 
parameter, and regularity conditions for the solution of the appropriate Cauchy scalar 
comparison problem by means of the Mach number. The TS of the process in finite and in- 
finite time intervals and the asymptotic TS are investigated. 

Sufficient Lyapunov stability conditions are found in [9-16] for an analogous system. 
The results of this paper differ substantially from the stability properties in the sense 
of Lyapunov mentioned in [9-16] not only by the fact that the TS conditions of the system 
under consideration are studied in any finite and previously assigned time interval but 
also by the fact that constraints on the initial state of the system are independent of 
the majorization conditions of subsequent states of the process during the given time in- 
terval. Upon satisfying specific conditions the domain found here for the Mach number 
values includes analogou~ domains in [12-16]. Conditions are mentioned for which techni- 
cal instability is possible for the original process. The approach proposed in this paper, 
based on the comparison method in combination with the second Lyapunov method can be ap- 
plied to investigate TS properties in more complex panel flutter problems without simpli- 
fying assumptions, for instance, in nonlinear panel flutter problems, in the same prob- ~ 
lems in the presence of parametric loadings in the case of curved panels with different 
boundary clmmping methods, cylindrical, conical, or tuncated conical panels, as well as 
in problems of panel vibrations due to either aerodynamic noise or buffeting. The absence 
of negative-definiteness conditions on the total derivative of the Lyapunov functional 
by virtue of the original boundary value problem here expands the possibility for condi- 
tions on the dynamic process parameters in this approach, in contrast to the stability 
in the Lyapunov sense. 

I. FORMULATION OF THE PROBLEM AND CONDITIONS ON THE LYAPUNOV FUNCTIONAL 

Let us consider the dynamic behavior of a two-dimensional panel in a supersonic flow. 
We shall later use the following notation: a~ is the speed of sound in an unperturbed 
stream, c is the panel chord length; d = D/pc~a~ is the bending stiffness parameter, D = 
Eh~/[12(l _ ~2)] is the bending stiffness, p is the unperturbed air density, E is Young's 
modulus, f = F/pca~ 2 is the stress parameter, F is the external force along the chord 
referred to unit panel width (positive for tension, negative for compression), M is the 
free stream Mach number, h is the panel thickness, m is the mass of unit panel area, t = 
Ta~/c is dimensionless time, T is time, U is the supersonic air flow velocity, X is the 
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distance along the panel chord, x = X/c is the dimensionless distance, 
displacement, P = m/oc is the ratio of the panel mass to the air mass, 
ratio. 

Z(X, T) is the panel 
and ~ is the Poisson 

Motion of a panel in a supersonic flow and subjected to the action of a load F applied 
along the freely supported panel edges is described by the boundary value problem in dimen- 
sionless form 

da4--iz+~ - -  + M  + ~--0; ( 1 . 1 )  
ax 4 at ~z Ox 2 -~x "~ 

z (O, /) = z (l, t) = O, a2zto t) = ~ (l, t) = O; (1.2) 
i)x ~ ~ '  Ox 2 

(x, 0 I':'~ Uo (x), (x, ,) I 
( 1. 3 ) 

= = u ,  (t), 
at  t = t  o 

w h e r e  z = Z / c ;  x ~ [ 0 ,  1 ] ;  t ~ K c I ~ [ t  o , + ~ ] ;  K i s  a f i n i t e  t i m e  i n t e r v a l ,  t o ~ 0 ,  
u 0 ( x ) ,  u l ( x )  a r e  t h e  i n i t i a l  p a n e l  d i s p l a c e m e n t  and  v e l o c i t y  d i s t r i b u t i o n s  s a t i s f y i n g ,  by  
a s s u m p t i o n ,  c o n d i t i o n s  a s s u r i n g  a s i n g l e - v a l u e d  s o l u t i o n  o f  t h e  b o u n d a r y  v a l u e  p r o b l e m  
( 1 . 1 ) - ( 1 . 3 )  i n  t h e  c l a s s  o f  c o n t i n u o u s  f u n c t i o n s  i n  x ,  t h a v i n g  c o n t i n u o u s  d e r i v a t i v e s  
w i t h  r e s p e c t  t o  x ,  t o f  t h e  r e q u i s i t e  o r d e r s  [ 2 5 ] .  The c o e f f i c i e n t s . d ,  ~,  M a r e  p o s i t i v e ;  
t h e  c o e f f i c i e n t  f c a n  be p o s i t i v e  o r  n e g a t i v e .  

The p r o b l e m  i s  t o  i n v e s t i g a t e  t h e  t e c h n i c a l  s t a b i l i t y  o f  t h e  m o t i o n  o f  a t w o - d i m e n -  
s i o n a l  p a n e l  i n  a s u p e r s o n i c  s t r e a m  as  d e s c r i b e d  by  t h e  b o u n d a r y  v a l u e  p r o b l e m  ( 1 . 1 ) - ( 1 . 3 ) .  
L e t  u s  e x a m i n e  t h e  L y a p u n o v  f u n c t i o n a l  

l 

Vtz,  t ] =  dx ~ a t )  +l(-~x) +dkax2  ) + M  z ~ + 2 ~ z ~  �9 (1.4) 
0 

We use the inequality [4, i0, 12-16] 

l 1 1 

o o 

where the continuously differentiable function ~(x) satisfies the condition r = ~(i) = 
0. For f + ~2d e 0 the functional V has the lower bound 

l 

. , z  
0 

+ n 2] + n4d) + 2Mgz~  + 9 ~7 dx. (1.6) 

The quadratic form in z, 3z/8t in (1.6) is positive-definite if the following conditions 
are satisfied 

M + a ~] -I- ~4d > O, ~t(M -? ~21 + ~4d) > M2~.  (1.7) 

The first inequality in (1.7) follows from the second. Consequently, the positive-definite- 
ness condition for (1.4) will be 

tKM + ~ / +  #d)-- M 2 ~ >  O. (1.8) 

L e t  u s  f i n d  t h e  doma in  o f  v a l u e s  f o r  w h i c h  ( 1 . 8 )  h o l d s  f o r  t h e  t r i n o m i a l  5~(M) = -r 2 + 
My + ~(~2f + ~d). Let r = ~2f + ~4d. We consider the equation 

whose roots equal 

Therefore, for 

--M2~ + M + r = O, (1.9) 

M1, 2 = (2~) -x (l • ~ / t  + 4D2(~2[ + ~-~d)). (1.1o) 

850 



M ~ < M < M z  (1.11) 

the inequa l i ty  (1.8)  e x i s t s ,  i . e . ,  the funct ional  V[z, t]  is  p o s i t i v e - d e f i n i t e  when (1.11) 
is satisfied. If we limit ourselves to the values M z > M ~ 0, then the upper bound for 
M 2 will be 

M2<O=f+a2d  (n29 + t +  Vi~'4~2(~2/+~"d)) 
2~ (f + ~2d) " (1.12) 

Let the second factor in (1.12) be denoted by R I. If R I ~ 1 then (1.12) includes an ana- 
logous condition for M 2 entering into the system of sufficient Lyapunov stability condition 
obtained in [12-16]. We find from (i.i0) 

/ > --[I/(4~ 2~2) + ~id], ( i. 13) 

from which it follows that f can take on negative values hut not smaller than -[I/(4D2~ 2) + 
z2d] and this means it differs from the similar condition in [4, 8, 12-15] by the first 
component. 

Let us introduce the small positive parameter s ~ (0, i). We consider the boundaries 
of the greatest achievable values of the displacement and the other quantities character- 
izing the dynamical behavior of the system under consideration to be bounded functions 
of the time and the small parameter e. Let L > 0 denote the greatest possible value of 
the quantity on the right in the inequality (1.12): L = max{Q} The finite time interval 

y,d 

K being investigated will be given by using the small parameter e: K = [t0, LE-z]. We 
shall understand the technical stability of this system to be the stability property accord- 
ing to the definitions in [22-24]. 

Definition i. The dynamic system described by the boundary value problem (1.1)-(1.3) 
is called technically stable in the finite time interval K c I if the condition 

V[z(x, t), t] ~ P(t), t ~ K, (1.14) 

is satisfied along the perturbed motion z(x, t) of the boundary value problem (I.i)-(1.3) 
for the positive-definite functional V[z, t] if only V[z(x, to) , to] ~ a where the previous- 
ly selected constant a = const > 0 and the previously given bounded function P(t) satisfy 
the inequality 

P(to) ~ a, to ~ K.  
(1.1s) 

in the previously mentioned time interval K c I. 

Definition 2. If the conditions of Definition 1 are satisfied for any K ----- I, then 
the dynamic system characterizing the boundary value problem (1.1)-(1.3) is called tech- 
nically stable in the infinite time interval I. Moreover, if lim V[z(x , t ) , t ]=O along 

the solution z(x, t) of problem (1.1)-(1.3), then the dynamic system is asymptotically 
technically stable. 

Let p(z; ~) denote the quantity in the right in (1.6), where ~ = (M, f, d, D). We call 
p(z; $) the measure of the dynamic process (1.1)-(1.3). It is easy to see that the defi- 
nitions of the TS of the original system relative to the measure p(z; ~) follow from Defi- 
nitions 1 and 2. 

2. SUFFICIENT TS CONDITIONS IN THE PANEL FLUTTER PROBLEM ON THE BASIS 
OF THE METHOD OF COMPARISON 

Sufficient TS conditions are obtained here in finite and infinite time intervals as 
well as the asymptotic TS by using the scalar Cauchy problem of comparison whose solutions 
depend substantially on the parameters of the dynamical process (1.1)-(1.3). 

Thus, we construct the appropriate scalar comparison equation. We evaluate the deri- 
vative dV/dt along the solution z(x, t) of the problem (1.1)-(1.3). 
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1 
' ) ,  ' ,  

dt o l ~ ] 

--  2Mr t) Oz(x' Ox -k- M [2 ' `Oz(x' t) Vt~[-----g-[-} - -  2](Oz(x' t))2~ --  2 d \  ~ t))2]]jl. 
( 2 . 1 )  

Using the property of monotoneity of the product for any natural quantities, we obtain 
the inequality 

1 V [z (x, t), t] ~> 1 (e-l-t) 2 ~ p ( z ( x ,  t); ~) ( 2 . 2 )  

along the solution of the problem (1.1)-(1.3) from (1.6). The right side in (2.1) is a 
regular function in t obtained after the integration with respect to the variable x ~ [0, 
i] along the solution of the original boundary value problem (1.1)-(1.3). Moreover, this 
function does not exceed 

1 

S[ (2.3) N ( t ; ~ ) = 2  dx (M~t--l) ot Ox �9 
o 

The integrand of the function N(t; $) is a sign-indefinite quadratic form in 8z/3t, 
By using (2.2) and (2.3), we form the function 

3 z / ~ x .  

q"5 (t; ~) = N (t; ~) - -  t (~ + t)~ t) (z (x, t); ~). ( 2 . 4 )  

The inequality N(t;$)  t V [z (x, t), tl ~ O (t; ~)~ h o l d s .  
(e -~- t) ~ 

There is a majorant 

1 

r ~)~<N (t; ~) (e+ 0 2 

for the function ~(t; ~). We let r $) denote the right side in (2.5) along the:solu- 
tion of the problem (1.1)-(1.3). Let us note that the quantities in (2.2)-(2.5) depend 
on M, f, d, ~ as on parameters satisfying conditions (1.7)-(I.13). Along the solution 
of the boundary value problem (1.1)-(1.3) 

dV[z(x, t), tl/dt ~ (e + t)-fV[z(x, t), tl + O(t; ~). ( 2 . 6 )  

1 

Let us examine the function c(t; ~) = ~(~; ~)d% along the solution of the problem 
0 

( 1 . 1 ) - ( 1 . 3 )  by t h e  c o n d i t i o n  o f  a problem c o n t i n u o u s  in  a g i v e n  i n t e r v a l  K. We assume 
k(t) = V[z(x, t), t] - o(t; $). Then we write the inequality (2.6) in the form 

dk(t)/dt <~ (e ~- t)-:[k(t) + a(t; ~)]. ( 2 . 7 )  

The f u n c t i o n  ~ ( t ;  ~) c o n t a i n s  t h e  t ime  e x p l i c i t l y  in  i t s  c o e f f i c i e n t s .  I t s  i n t e g r a n d  i s  
s i g n - d e f i n i t e  h e r e  f o r  n o t  a l l  v a l u e s  o f  t ~ K. I t  i s  e a s y  to  s e e  t h a t  o n l y  under  t h e  
c o n d i t i o n s  

0 ~ to, 0 ~ I f  2~ (1-]- nfd) t > 
V M -~- ~ - -  4 (f -~- ~2d) 

max {0 ;4 (1+  nfd) --  ~ } < M < M I 

- -  8 ,  

( 2 . 8 )  

is the integrand in ~(t; $) negative definite as a quadratic form in 8z/8t, 3z/8x. There- 
fore, the function o(t; 6) is also a sign-definite bounded function in the domain K only 
under the conditions (2.8). Starting from the inequality (2.7), we consider the comparison 
differential equation 
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dy/dt = (e + t)-2[g + a(t; ~)1, t ~ K 

under the initial conditions 

( 2 . 9 )  

Y(to) = go ~ V[z(to), to], ( 2 . 1 0 )  

where 

V [z{to), to] = .i dx [~tu~ (x) 
o 

. I,~,,o (x}~ ( s  {.,:} 1 "~ + sl ; + d 
] 

+ M (u~ (x) + 2pu o (x) u~ (x)) | .  
3 

(2.11) 

The general solution of the Cauchy problem (2.9), (2.10) is written as 

t 
y(t, to)=yoexp e+to 

t 

t o 

Taking into account that V[z(t0), to] ~ k(to) , we obtain the estimate 

1 ! 
V [ z ( x , t ) , t ] ~ P ( t ; ~ , e ) ~ Y o e x p  e-l-t o e I t 

t 

- - )  + exp(- -  e_~_ t). f 
t o 

V t ~ K .  (2.12) 

from (2.7) and (2.10) by means of the theorem on differential inequalities [22-24, 26] for 
the Lyapunov functional (1.4) along the solution of the problem (1.1)-(1.3). Taking account 
of the continuity property of the function P(t; ~, e) in a given time interval K for arbi- 
trary e ~ (0, i) and the above-mentioned parameters 6, the TS of the system under consi- 
deration in a finite time interval follows from (2.12). 

Indeed, let the constant C = const > 0 be previously known such that the following 
estimate holds 

la(t; ~)l ~ C Vt  ~ K 
( 2 . 1 3 )  

for the above-mentioned conditions on the parameter ~. Then by using integration by parts 
and majorizing, we find the inequality 

P (t; ~, e) ~ exp (-- ~_ t ) exp (~ _~o) (g o + C). (2.14) 

The function on the right in (2.14) does not exceed 

during the interval K. Hence, taking account of condition (2.10) the technical stability 
of the motion of a two-dimensional panel in a finite time interval K that is in a super- 
sonic flow and is subjected to the action of a strong load along its free edges follows. 

t 

I f  t h e  f u n c t i o n  ~ ( t ;  ~) i s  s u c h  t h a t  t h e  i n t e g r a l  exp ~ ~D(~; ~)d~ i s  a c o n t i n u o u s  
t 0 

bounded  f u n c t i o n  in  any t i m e  i n t e r v a l  K -- I and has  g rowth  in  each  K -- I n o t  more r a p i d  

expI~-~t) ,  t h e n  as  f o l l o w s  f rom ( 2 . 1 2 ) ,  t h e  o r i g i n a l  s y s t e m  ( 1 . 1 ) - ( 1 . 3 )  t h a n  t h e  function 

defined in each interval K ~ I is technically stable in an infinite time interval, i.e., 
in this case a previously assigned continuous bounded function B(t) found in each K ----- I 
can be indicated such that the estimate 

t 

~oexp r T+-7' t ~ K ~ _ f  (2.16) 
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( t ) ( t ) ~ O , l ~ K _ _ i .  i n  p a r t i  - w i l l  be s a t i s f i e d  under  t h e  c o n d i t i o n  B( t )+  Yo exp ~ exp - - ~ - 7 ,  t 

cular, condition (2.16) can be of the form exp ~ exp ~ (1)(T; ~)dT'for all K ~I. 
t 

In this case, as t § +~ we have P(t;~,e)~y0exp(~)~-I. 

Utilizing the condition (2.13) for all K ---~ I, we obtain the estimate 

P (t; ~, s) <~ exp [ ~ )  (y o + C) Vt ~ I. ( 2 . 1 7 )  

f rom t h e  i n e q u a l i t y  ( 2 . 1 4 ) .  Hence,  t a k i n g  a c c o u n t  o f  ( 2 . 1 0 )  and ( 2 . 1 2 ) ,  t h e  TS o f  p a n e l  
mo t ion  in  a s u p e r s o n i c  f l o w  in  an i n f i n i t e  t ime  i n t e r v a l  f o l l o w s  unde r  t h e  c o n d i t i o n  ( 2 . 1 3 )  
f o r  a l l  K --  I .  As i s  s een  from ( 2 . 1 5 ) ,  t h e  i n t e r v a l  K can h e r e  be  d e t e r m i n e d  by u s i n g  

the small parameter c § 0. Then from (2.15) for ~ ~ 0 we find exp ~ exp (Yo+C)-+ 

exp(#)(Y0+ C), t0 ~ 0. Since g ~ 0 in this case, then in place of (2.17)wehave the strict 

If the original system (1.1)-(1.3) is technically stable in I and, moreover, the condi- 
tion 

P(t; ~, e) -~ 0 for t --~ -~- oo ( 2 . 1 8 )  

is satisfied for given $, e, then the system (1.1)-(1.3) is technically asymptotically sta- 

ble. In particular, condition (2.18) will be satisfied if the condition 

t 

is valid, t~ 

There results from (1.12) that satisfaction of the inequality M 2 e Q implies spoilage 
of the positive-definiteness of the functional (1.4). However, this is inadequate for 
speaking about the TS of the original system. The original process (1.1)-(1.3) will evi- 
dently be technically unstable for given parameters if the inequality V[z(x, t), t] > 
P(t; ~, e) holds for at least one time t in the considered (finite or infinite) time inter- 
val. As follows from the estimate (2.12), one of the technical instability conditions of 

t 

the process (i.i)-(1.3) is the condition ~ e x p ( ~ - ~ l X  ~@,  ~)dr-+ + oo fort ~ K or t I, 

tO 

respectively. We here take M k = M I as the criticalMach number , where M l is given accord- 
ing to (I.i0). 
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